Difference between revisions of "Building TPT with Meson"
m (Remove random (untruthful) bit left over from the previous edit) |
(→It used to work, but it broke: wipe example would fail because the ninja call isn't cd'd to the build site) |
||
Line 197: | Line 197: | ||
cd The-Powder-Toy | cd The-Powder-Toy | ||
meson --reconfigure --wipe build-debug # or whatever you named your build site | meson --reconfigure --wipe build-debug # or whatever you named your build site | ||
+ | cd build-debug | ||
ninja | ninja | ||
You will have to do this with every broken build site. | You will have to do this with every broken build site. |
Revision as of 06:02, 23 November 2021
Language: | English • 한국어 • 中文 |
---|
This is a guide to get you started on coding for The Powder Toy. If you have any questions, just ask in the Development Assistance section on The Powder Toy forums.
EDITOR NOTE: Please do not edit this guide without consulting with TPT developers first; you risk your changes being mercilessly rolled back without prior notice otherwise.
Windows
Tested on Windows 10.
Required environment setup
- install Git (get it here)
- options should be left unchanged
- install Python (get it here)
- it is recommended to allow the installer to add Python to PATH and to disable the path length limit (the latter is offered near the end of the installation process)
- open an elevated command prompt (search for "cmd" the Start Menu, right-click the most sensible result, click "Run as administrator") and execute the following commands (you can close the prompt afterwards)
python -m pip install --upgrade pip pip install --upgrade meson ninja
- open a non-elevated command prompt (the same as before, but instead of running as administrator, just run it by clicking its shortcut) and execute the following commands (you can close the prompt afterwards)
- replace
[wherever you keep your repositories]
with the actual path, taking care to remove the[]
characters also; if the path has spaces in it, add""
around it- example: if your repositories are in
C:\Users\Powder Toy Fan\Development
, this path will be"C:\Users\Powder Toy Fan\Development"
- example: if your repositories are in
- replace
cd /d [wherever you keep your repositories] git clone https://github.com/The-Powder-Toy/The-Powder-Toy
Building for the first time with MSVC
MSVC is Microsoft's C/C++ compiler for Windows, which comes with Visual Studio. Using MSVC is the recommended way to build TPT on Windows if you are new to modding or have any reason whatsoever to prefer MSVC over MinGW (for which a separate guide is provided below).
- install Visual Studio (get it here)
- select the Desktop Development workload
- you really only need "MSVC" and "Windows 10 SDK", so you can uncheck everything else in the list on the right
- find "x64 Native Tools Command Prompt for VS" (or similar, hereafter referred to as "VS prompt") in the Start Menu and execute the following commands
- it is recommended to pin the resulting window to your taskbar; you will be using this a lot to build TPT
cd /d [wherever you keep your repositories] cd The-Powder-Toy meson build-debug cd build-debug ninja
- you may see a few warnings throughout all of this, but no errors (if you do at any stage, do not try to skip it; ask us about it on the forum instead)
- if you are not sure, run Ninja again; if it says "no work to do", everything worked fine
- at this point, running TPT from the VS prompt should be possible
powder.exe
Using the Visual Studio IDE
The method above does not let you use the 'Visual' part of Visual Studio, the IDE. Although Meson has limited support for this use case, if for some reason you wish to use the IDE, you can ask Meson to generate a build site that uses Visual Studio instead of Ninja.
- open a VS prompt (see above) and execute the following commands
cd /d [wherever you keep your repositories] cd The-Powder-Toy meson --backend=vs -Dbackend_startup_project=powder build-debug-vs
- you will not need the VS prompt beyond this point
This will generate a build site with a Visual Studio solution inside (the-powder-toy.sln
). You can use this as any other solution, except for a few key differences:
- the IDE can only be used for more comfortable editing and debugging and not much else, including changing the project structure; you will have to familiarise yourself with Meson and work with the
meson.build
files in order to do that - once you actually change
meson.build
files, Meson will automatically regenerate the solution the next time you try to build it; Visual Studio will give you a scary popup about the solution having been changed, which is perfectly normal, just click 'Reload Solution' - the configuration you currently see (most likely
debug|x64
, if you are following this guide exactly) is the only configuration the solution has, and it is not recommended to add other configurations as Meson will just overwrite them the next time it regenerates the solution; instead, you have to generate separate build sites with Meson
Building for the first time with MinGW
MinGW is a package that makes it possible to build TPT with GCC even on Windows. You probably have your reasons for preferring MinGW over MSVC (for which a separate guide is provided above); this guide makes no effort to list possible ones.
- install MinGW (get it here)
- this comes in multiple "flavours", you will need "x86_64-posix-seh"
- this guide has been tested with version 8.1.0
- you will be asked for a directory to install MinGW to; decide on a directory and make note of it for later
- even if you do not plan on doing anything with MinGW right now other than building TPT, you may need to install other flavours later, so it is recommended to install the required flavour to a location that will not interfere with others, e.g. include the version number and the flavour in the path
- find "Git Bash" (or similar, hereafter referred to as "bash prompt") in the Start Menu and execute the following commands
- it is recommended to pin the resulting window to your taskbar; you will be using this a lot to build TPT
- replace
[your MinGW bin directory]
with an actual path, taking care to remove the[]
characters also- the "bin directory" will most likely be the path to whatever directory you installed MinGW to, with /bin appended to it, all backward slashes replaced with forward slashes (
/
instead of\
), and using the MinGW root notation (/c/
instead ofC:\
) - you do not need to add
""
around the path if it contains spaces - example: if you install MinGW to
C:\mingw-w64\mingw64-x86_64-8.1.0-release-posix-seh-rt_v6-rev0
, the path to the bin directory will be/c/mingw-w64/mingw64-x86_64-8.1.0-release-posix-seh-rt_v6-rev0/bin
- the "bin directory" will most likely be the path to whatever directory you installed MinGW to, with /bin appended to it, all backward slashes replaced with forward slashes (
- replace
[wherever you keep your repositories]
with the actual path, taking care to remove the[]
characters also; if the path has spaces in it, add""
around it- the same applies to the format of the path of this directory as to that of the bin directory
- example: if your repositories are in
C:\Users\Powder Toy Fan\Development
, this path will be"/c/Users/Powder Toy Fan/Development"
export PATH="[your MinGW bin directory]:$PATH" cd [wherever you keep your repositories] cd The-Powder-Toy meson build-debug cd build-debug ninja
- you may see a few warnings throughout all of this, but no errors (if you do at any stage, do not try to skip it; ask us about it on the forum instead)
- if you are not sure, run Ninja again; if it says "no work to do", everything worked fine
- at this point, running TPT from the bash prompt should be possible
./powder.exe
- note that this executable depends on the MinGW runtime, which you will have in PATH due to the first command executed in the prompt
- a debugging session can be initiated like so (GDB cheat sheet):
gdb ./powder.exe
MacOS
Tested on MacOS 10.15 and 11.5.
Required environment setup
- install Homebrew (get it here)
- in the next step,
xcode-select
is used; note that you do not need to install Xcode to run that command - in a terminal, execute the following commands
xcode-select --install # asks you for confirmation, installs compilers sudo -H python -m pip install --upgrade pip # if you get "No module named pip", try python3 sudo -H pip install --upgrade meson ninja brew install pkg-config luajit fftw sdl2 cd [wherever you keep your repositories] git clone https://github.com/The-Powder-Toy/The-Powder-Toy
Building for the first time
-
cd
to the repository root and execute the following commands
meson build-debug cd build-debug ninja
- you may see a few warnings throughout all of this, but no errors (if you do at any stage, do not try to skip it; ask us about it on the forum instead)
- if you are not sure, run Ninja again; if it says "no work to do", everything worked fine
- at this point, running TPT from the prompt should be possible
./powder
Linux
Tested on Ubuntu 20.04 and Raspbian 10.
Required environment setup
- make sure your package lists are up to date (e.g.
sudo apt update
) - install a C++ compiler (e.g.
sudo apt install g++
) - install git (e.g.
sudo apt install git
) - install python (e.g.
sudo apt install python3
) - install pip if not present (consult their guide)
- upgrade pip (e.g.
sudo -H python3 -m pip install --upgrade pip
) - install Meson and Ninja if not present (e.g.
sudo -H pip install --upgrade meson ninja
) - optionally, install ccache (e.g.
sudo apt install ccache
) - install a library utility (e.g.
sudo apt install pkg-config
) - install required libraries (e.g.
sudo apt install libluajit-5.1-dev libcurl4-openssl-dev libfftw3-dev zlib1g-dev libsdl2-dev
)- your package manager may package these under wildly different names
- download the source code (e.g.
git clone https://github.com/The-Powder-Toy/The-Powder-Toy
)
Building for the first time
-
cd
to the repository root and execute the following commands
meson build-debug cd build-debug ninja
- you may see a few warnings throughout all of this, but no errors (if you do at any stage, do not try to skip it; ask us about it on the forum instead)
- if you are not sure, run Ninja again; if it says "no work to do", everything worked fine
- at this point, running TPT from the prompt should be possible
./powder
Next steps (all platforms)
Updating the binary
Now that you have successfully built TPT for the first time, you will probably want to change things in the code. To update the binary, build it again by executing
ninja
in the same prompt you executed it the last time. You will have to do this every time you change something and want the binary to reflect the change.
Release builds
So far, you have been building "debug" binaries. These make debugging significantly easier than "release" builds, but they also offer less performance. You can instead build a "release" binary, which is much more performant, but very difficult to debug. Only use these builds when you are certain that you have no more bugs to take care of. If a bug does appear later on, go back to building debug binaries.
To build a release binary, navigate back to the root of the repository in your prompt and create a new build site with Meson, then build with Ninja again
cd [whatever parameters that take you to your repositories, see above] cd The-Powder-Toy meson -Dbuildtype=release build-release cd build-release ninja
Note that build-debug and build-release directories are independent "build sites", each of which you can update with Ninja when you set them as your current directory (by using cd
, see the lists of commands above).
Static builds
Both the debug and release configurations above produce "dynamic" binaries, which means they depend on certain components of your system (libraries you have installed with apt on linux or with brew on macos) or files other than powder.exe (DLLs in the same directory as powder.exe on windows). If you are a mod author, please make sure you are not shipping such binaries, as your users are used to TPT not depending on anything and thus are unlikely to have experience with installing these libraries on their own.
You can get rid of most of these dependencies by building a "static" binary. This way, the binary will depend on very basic components of your system that are very likely to be present. It will also gain a few megabytes and linking it will take longer, which is why you would only do this when you are about to release it to the public.
To build a static binary, navigate back to the root of the repository in your prompt and create a new build site with Meson (see NOTE below!), then build with Ninja again
meson -Dbuildtype=release -Dstatic=prebuilt build-release-static cd build-release-static ninja
NOTE: On Windows, if using MSVC, you will also need to add the -Db_vscrt=static_from_buildtype
option to the Meson call above, otherwise the resulting binaries will be dynamically linked against the MSVC runtime (vcruntime.dll and similar).
meson -Dbuildtype=release -Dstatic=prebuilt -Db_vscrt=static_from_buildtype build-release-static cd build-release-static ninja
NOTE: On Windows, if using MinGW, -Db_lto=true
is known to break static builds; use this setting at your own risk. The Meson configuration will throw an error upon detecting this setting; you will have to fix this on your own.
NOTE: On Windows, if using MinGW, even static builds will not be "fully static", as they will still import functions from msvcrt.dll. This is fine though, as this library is present on every modern install of Windows.
It used to work, but it broke
Each platform has its own set of quirks that need to be worked around (mostly looking at you, microsoft and apple). Fortunately, our build system takes care of most of these. Unfortunately, the workarounds come in the form of upgrades to the build system, which are not installed automatically, and even if they are, affected build sites may need to be reconfigured manually. If you had at some point gotten TPT to build successfully, but since then your build sites somehow broke, you can try one of the following methods to fix them.
The most straightforward way to fix a single build site is to reconfigure it. To check if this worked, try running Ninja.
cd [whatever parameters that take you to your repositories, see above] cd The-Powder-Toy meson --reconfigure --wipe build-debug # or whatever you named your build site cd build-debug ninja
You will have to do this with every broken build site.
If this does not help, you can upgrade pip, Meson and Ninja. Like when setting them up for the first time, add sudo -H
on Linux and MacOS, and run this in an elevated command prompt on Windows.
python -m pip install --upgrade pip # if you get "No module named pip", try python3 pip install --upgrade meson ninja
Once you are done with this, reconfigure your build sites (see above).
If not even this helps, that is your cue to start from scratch, following the guide as if you are building TPT for the first time, except you already have the repository, so you do not need to clone that again. In fact, this is where your changes to TPT are stored, so you should never delete it. Deleting your local clone of the repository never solves any problem, it only results in loss of code. Do not even consider doing it.
As a last resort, you can ask us on the forum.
Build options
Build options are passed to Meson at when you set up a build site (see examples above) or at any later time, when the build site is already in use. In both cases, they are passed as command line arguments of the form -D[name]=[value]
. For example, to set up a build site that compiles TPT with Lua 5.1 instead of LuaJIT, you would issue the following command
meson -Dlua=lua5.1 build-debug-lua5.1
But you could also take an existing build site and change the relevant build option to do the same
cd build-debug meson configure -Dlua=lua5.1
The next time you run Ninja, everything that needs to be rebuilt as a result of this change will be rebuilt. See the Meson quick guide for more on configuring build sites.
Below is a list of build options our Meson setup supports
Name | Type | Description |
---|---|---|
static | one of 'none', 'system', 'prebuilt' | Build statically using libraries present on the system ('system') or using prebuilt libraries official builds use ('prebuilt') |
beta | boolean | Beta build |
ignore_updates | boolean | Don't show notifications about available updates |
install_check | boolean | Do install check on startup |
http | boolean | Enable HTTP via libcurl |
gravfft | boolean | Enable FFT gravity via libfftw3 |
snapshot | boolean | Snapshot build |
snapshot_id | integer | Snapshot ID, only relevant if 'snapshot' is true |
mod_id | integer | Mod ID, used on the Starcatcher build server; the build server will compile for all platforms for you and send updates in-game, see jacob1 to get a mod ID |
lua | one of 'none', 'lua5.1', 'lua5.2', 'luajit' | Lua library to use |
ssl | currently only 'openssl' | SSL library to use |
x86_sse | one of 'none', 'sse', 'sse2', 'sse3', 'auto' | Enable SSE (available only on x86) |
native | boolean | Build with optimizations specific to the local machine, may not run on other machines, overrides 'x86_sse' |
ogli | boolean | Enable OpenGL interface rendering (currently defunct) |
oglr | boolean | Enable OpenGL particle rendering (currently defunct) |
build_powder | boolean | Build the game |
build_render | boolean | Build the thumbnail renderer |
build_font | boolean | Build the font editor |
server | string | Simulation server |
static_server | string | Static simulation server |
update_server | string | Update server, only used by snapshots and mods, see 'snapshot_id' and 'mod_id' |
workaround_gcc_no_pie | boolean | Pass -no-pie to gcc manually to work around meson's -Db_pie=false doing nothing |