Leo Paquette's group at Ohio State University was the first to succeed, by a complex 29-step route that mostly builds the dodecahedral skeleton one ring at a time, and finally closes the last hole.
In 1987, more versatile alternative synthesis route was found by the Horst Prinzbach's group. Their approach was based on the isomerization pagodane, obtained from isodrin as starting material i.a. through [6+6]photocycloaddition. Schleyer had followed a similar approach in his synthesis of adamantane.
Following that idea, joint efforts of the Prinzbach team and the Schleyer group succeeded but obtained only 8% yield for the conversion at best. In the following decade the group greatly optimized that route, so that dodecahedrane could be obtained in multi-gram quantities. The new route also made it easier to obtain derivatives with selected substitutions and unsaturated carbon-carbon bonds. Two significant developments were the discovery of (sigma)-bishomoaromaticity and the formation of C20 fullerene from highly brominated dodecahedrane species.